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Abstract

We show that the recent ALICE measurements of exclusive J/ψ production in ultraperipheral PbPb collisions at 2.76
TeV provide the first direct experimental evidence for the strong nuclear gluon shadowing in lead at x ∼ 10−3. The
evidence is based on the comparison of the nuclear suppression factor S (x ≈ 0.001) = 0.61+0.05−0.04 found in the analysis
of the coherent J/ψ photoproduction cross sections measured by ALICE with the nuclear gluon shadowing predicted
by the global fits of nuclear parton distributions and by the leading twist theory of nuclear shadowing.
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1. Introduction

This brief communication aims to extract the nuclear suppression of coherent J/ψ photoproduction off nuclei from
the data obtained by the ALICE collaboration in ultra-peripheral PbPb collisions at √sNN = 2.76 TeV at the LHC.

Nucleus–nucleus collisions are considered as ultraperipheral collisions (UPCs), if the impact parameter |"b|—the
distance between the centers of the colliding nuclei in the transverse plane of the reaction—is larger than the sum
of the nuclear radii, i.e., |"b| > (2 − 3)RA, where RA is the nuclear radius (for a review of the UPC physics see, for
example, [1]). Hadron interactions are strongly suppressed in such collisions and, thus, experimentally the UPC
events are characterized by minimal multiplicity. This results in a relative enhancement of electromagnetic processes
induced by the high flux of photons generated by ultrarelativistic nuclei which scales as Z2, where Z is the charge of
the nucleus. The photon virtuality is small and while its transverse momentum is ∼ 1/RA, its longitudinal momentum
is proportional to the large Lorentz factor γL of the ion producing the photon flux. Hence, one can apply the method of
equivalent photons to express the cross section of J/ψ production in nucleus–nucleus UPCs as a product of the photon
flux emitted by one of the colliding nuclei and the cross section of J/ψ photoproduction on the other nucleus:

σAA→AAJ/ψ(y)
dy

= Nγ/A(y)σγA→AJ/ψ(y) + Nγ/A(−y)σγA→AJ/ψ(−y) . (1)

In Eq. (1), Nγ/A(y) ≡ ωdNγ/A(ω)/dω is the photon flux; y = ln(2ω/MJ/ψ) = ln(W2
γp/(2γLmNMJ/ψ)) is the J/ψ rapidity,

where ω is the photon energy (in the laboratory frame),Wγp is γp center-of-mass energy, MJ/ψ is the mass of J/ψ and
mN is the nucleon mass. The presence of two terms in Eq. (1) is due to the symmetry of PbPb collisions: each nucleus
can radiate a photon as well as serve as a target. The photon flux Nγ/A can be calculated with reasonable accuracy and,
therefore, the UPCs can be effectively used to study the energy behavior of the vector meson photoproduction cross
section at high energies.

High energy coherent J/ψ photoproduction on nuclei is of a particular interest since the large c-quark mass, mc,
provides a hard scale µ ≥ mc justifying the use of the factorization theorem of perturbativeQCD (pQCD). This allowed
one to develop several models predicting the cross section of J/ψ photoproduction on nuclear targets at high energies.
Unfortunately, until recently, the progress in experimental studies of this process was more than modest: about two
dozens events have been accumulated in recent measurements of J/ψ photoproduction in AuAu UPCs at RHIC at√sNN = 200 GeV [2].
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In 2011, the ALICE collaboration measured the yield of coherent J/ψ photoproduction in PbPb UPCs in the
rapidity range of |y| ≤ 0.9 with the central barrel [3] and in the range of −3.6 ≤ y ≤ −2.6 covered by the muon
spectrometer [4]. This allowed one to obtain the cross section σPbPb→PbPbJ/ψ(y) at two values of rapidity:

σPbPb→PbPbJ/ψ(y = 0) ≈ 2.38+0.34−0.24(stat. + syst.) mb , (2)
σPbPb→PbPbJ/ψ(y = −3.1) ≈ 1.00 ± 0.18(stat.)+0.23−0.26(syst.) mb . (3)

These values of σPbPb→PbPbJ/ψ(y) were compared [3, 4] to a number of predictions and appeared to be in a better
agreement with those which calculated coherent J/ψ photoproduction on nuclear targets in the leading order (LO)
pQCD taking into account the nuclear gluon shadowing [5, 6].

However, it is reasonable to reduce as much as possible the model dependence in the comparisons of the exper-
imental cross sections with different model calculations. We believe that the best strategy to achieve this goal is to
analyze the ALICE results in terms of the nuclear suppression factor S (Wγp). We define S (Wγp) through the ratio of
the experimentally measured coherent photoproduction cross section at a givenWγp to the cross section calculated in
the impulse approximation (IA) which neglects all nuclear effects except for coherence:

S (Wγp) ≡














σexpγPb→J/ψPb(Wγp)

σIAγPb→J/ψPb(Wγp)















1/2

. (4)

Such a definition of S (Wγp) for coherent vector meson photoproduction on nuclear targets corresponds to the standard
estimate of nuclear suppression in terms of Aeff/A [7]. Since the nucleus remains intact in the considered process, the
transverse momentum distribution of J/ψ is dictated by the elastic nuclear form factor FA(t). Hence, the cross section
in the impulse approximation can be written as:

σIAγPb→J/ψPb(Wγp) =
dσγp→J/ψp(Wγp, t = 0)

dt
ΦA(tmin) . (5)

In Eq. (5), dσγp→J/ψp(Wγp, t = 0)/dt is the forward differential cross section of γ+p→ J/ψ+pwhich can be extracted
from the experimental data [8]; ΦA(tmin) is defined as the integral over the nuclear form factor FA(t) squared:

ΦA(tmin) =
∞

∫

tmin

dt|FA(t)|2 , (6)

where tmin = −p2z,min = −[M
2
J/ψ/(4ωγL)]

2 is determined by the minimal longitudinal momentum transfer pz,min charac-
terizing the coherence length which becomes important in the low energy domain. In the case of Pb, the nuclear form
factor

FA(t) =
∫

d2%b dz ei%pt ·%beipz ·zρA(%b, z) , FA(0) = A , (7)

can be calculated with a small uncertainty since the nuclear density distribution ρA(%r) is well known from the electron–
lead and proton–lead elastic scattering experiments [9].

It is important to point out that the suppression factor S (Wγp) is practically model independent since the estimate
of the cross section in the impulse approximation is based on experimental data.

2. Calculation of the suppression factor

2.1. Cross section of coherent J/ψ photoproduction in ALICE measurements
In this subsection, we determine the coherent J/ψ photoproduction cross section σγPb→J/ψPb(Wγp) from the values

of σPbPb→PbPbJ/ψ(y) measured by ALICE. In general, the extraction of σγPb→J/ψPb(Wγp) is not straightforward due to
the presence of two terms in Eq. (1). However, this problem is not present at y = 0 since the energies of the photons
emitted by both colliding ions are equal in this case. Thus, we obtain:

σγPb→J/ψPb(Wγp = 92.4GeV) =
σPbPb→PbPbJ/ψ(y = 0)

2Nγ/Pb(y = 0)
. (8)
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Figure 3: Comparison of the ALICE suppression factors with predictions of the nuclear gluon shadowing in HI-
JING 2.0 (top), global QCD fits (middle), and in the leading twist approximation (bottom).
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Figure 3: Comparison of the ALICE suppression factors with predictions of the nuclear gluon shadowing in HI-
JING 2.0 (top), global QCD fits (middle), and in the leading twist approximation (bottom).
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Figure 2: Comparison of the ALICE suppression factors with the estimates in the Glauber model with the color dipole cross section and in the
Starlight approach.

Hence, in the leading order pQCD, the suppression of coherent J/ψ photoproduction on nucleus as compared to
the impulse approximation results from the coherent nature of the small x screening of the gluon field of the nucleus
which is generally accepted to be characterized by the R(x, µ2) factor3.

In the top panel of Fig. 3, we compare the values of S (Wγp) obtained in our analysis of the ALICE data (two
black solid circles) at x = 0.022 and x = 0.001 corresponding to the energies of Wγp = 19.6 GeV and Wγp = 92.4
GeV to the x dependence of the parametrization of the nuclear gluon shadowing factors R(x) used in HIJING 2.0
generator [24, 25]. In this approach, the nuclear gluon shadowing is characterized by the parameter sg and, contrary
to pQCD, it does not depend on the scale. In the older version of HIJING [24], the values of sg were chosen to be in
the range of 0.24 − 0.28. The nuclear gluon shadowing in this case—which is shown by the red dashed curve—is too
strong compared to the ALICE suppression factor at x ≈ 0.001. More recent versions of HIJING include the impact
parameter dependence of the nuclear gluon shadowing [25] and use the values of sg = 0.17 − 0.22 determined from
fits to the RHIC hadron production data within a two-component mini-jet model. The parametrization with sg ≈ 0.18
describes the ALICE values very well, see the blue solid curve in the top panel of Fig. 3.

In the middle panel of Fig. 3, we compare the nuclear suppression factor found from the analysis of the ALICE data
to the x dependence of the nuclear gluon shadowing factors obtained using several nuclear parton distribution functions
(PDFs). These nuclear PDFs are the results of the global QCD fits based on the data on deep inelastic and Drell–Yan
processes on nuclei. In particular, we consider HKN07LO [26], nDSLO [27], EPS08LO and EPS09LO [28]. In
accordance with [19], we take µ2 = M2

J/ψ/4, which is close to the c-quark mass squared. Note that a somewhat larger
value of µ2 is preferred by the analysis of [23].

From the comparison shown in the middle panel of Fig. 3, we see that the HKN07LO, nDSLO and EPS08LO
predictions for R(x, µ2 = 2.4 GeV2) are disfavored by the strong contradiction with the nuclear suppression found by
ALICE at x ≈ 0.001: while HKN07LO and nDSLO predict too weak shadowing, the EPS08 shadowing is too strong.
A good agreement is observed for the central set of the EPS09LO nuclear gluon shadowing factor (blue solid line).
However, one has to admit that the uncertainties of EPS09LO (turquoise shaded area) are very large.

It is worth noting here that the main problem in the determination of the nuclear gluon shadowing at x ∼ 10−3
in the global QCD fit analyses is the lack of high quality data sensitive to the nuclear gluon PDFs not only at these

3Note that a consistent treatment within the LO pQCD requires the use of the same proton gluon density Gp(x, µ2) in the calculation of the
forward γp→ J/ψp cross section and in the definition of R(x, µ2).
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Combining Gribov theory  of shadowing and pQCD factorization theorem for diffraction in DIS 
allows to calculate LT shadowing  for all parton densities  (FS98) (instead of calculating F2A only)

 Theoretical expectations for shadowing in the  LT limit

Theorem:   In  the low thickness limit the leading twist nuclear shadowing is unambiguously 
expressed through the nucleon diffractive  parton densities                         :
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FIG. 3: The forward γ∗-nucleus triple scattering amplitude.

Corrections to the elastic rescattering approximation can be estimated by taking into

account the effects of fluctuations of the strength of the rescattering interaction. Modeling

of these effects was performed in [23] with the conclusion that for a wide range of cross

section fluctuations, the reduction of nuclear shadowing (for fixed σeff ) remains a rather

small correction for all nuclei.

After introducing the attenuation factor into Eq. (2), the complete expression for the

shadowing correction, δfj/A, becomes

δfj/A(x, Q2) =
A(A − 1)

2
16πRe

[
(1 − iη)2

1 + η2

∫
d2b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2

∫ xIP,0

x

dxIP

×fD(4)
j/N (β, Q2, xIP , tmin)ρA(b, z1)ρA(b, z2)e

ixIP mN (z1−z2)e−(A/2)(1−iη)σj
eff

∫ z2
z1

dzρA(b,z)

]
. (6)

This is our master equation (see also Eq. (14)). It contains several sources of model-

dependence and theoretical ambiguity. First, the attenuation factor T (b, z1, z2) assumes

that multiple rescatterings can be described by a single rescattering cross section [58] σj
eff ,

i.e. cross section fluctuations are neglected in the interaction with three and more nucleons.

Note that in the phenomenologically important kinematic region of fixed-target experiments,

x > 0.01 and Q2 > 2 GeV2, the uncertainty associated with the attenuation factor T (b, z1, z2)

is negligible since the rescattering contribution to shadowing is small, see Fig. 8. Second, the
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FIG. 2: The forward γ∗-nucleus rescattering amplitude that gives the principal contribution to

nuclear shadowing.

nuclear wave function squared can be approximated well by the product of individual

ρA(b, zi) for each nucleon (the so-called independent particle approximation).

• The factor eixIP mN (z1−z2) is a consequence of the propagation of the diffractively pro-

duced intermediate state between the two nucleons involved.

Step 2. The QCD factorization theorems for inclusive [25] and hard diffractive DIS [7]

can be used to relate the structure functions in Eq. (1) to the corresponding – inclusive and

diffractive – parton distribution functions. Since the coefficient functions (hard scattering

parts) are the same for both inclusive and diffractive structure functions, the relation between

the shadowing correction to nPDFs and the proton diffractive parton distribution functions

(PDFs) is given by an equation similar to Eq. (1). The shadowing correction to the nPDF

of flavor j, fj/A, δf (2)
j/A, is related to the proton (nucleon) diffractive PDF fD(4)

j/N of the same

flavor

δf (2)
j/A(x, Q2) =

A(A − 1)

2
16πRe

[
(1 − iη)2

1 + η2

∫
d2b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2

∫ xIP,0

x

dxIP

×fD(4)
j/N (β, Q2, xIP , t)|t=tmin

ρA(b, z1)ρA(b, z2)e
ixIP mN (z1−z2)

]
. (2)
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Including higher order terms + ....+

Color fluctuation approximation: Amplitude to interact with j nucleons  ~σj 

does not 
depend on fj

         integral over σ with weight Pj(σ) - probability for the probe to be in configuration
 which interacts  with cross section σ;
�....⇥j

�
�k

⇥
j

=
⇤ �

0
d�Pj(�)�k

For intermediate x one needs also to keep finite coherence length factor ei(z1�xz2)mN xIP
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Fluctuations with  small σ  are significant only for <σ>,  <σ2>

<σk> for k> 2  dominated by soft fluctuations. αIP(0)=1.1 - proof that soft dynamics dominates 
already for <σ2>
<σk> /<σ2> can be modeled based on soft physics - effects of dispersion in this case 
known to be  small ( we did a numerical study for our case where these effects are 
larger due to presence of small configurations).  

Fluctuation approximation for Q0
2:

�

soft

(x,Q2
0) ⌘

⌦
�

3
↵
j

/

⌦
�

2
↵
j

where 

which can be estimated semiquantitatively.  

is the only parameter (weakly dependent on x)
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Fig. 40. Impact parameter dependence of nuclear shadowing for 40Ca (upper green surfaces) and
208Pb (lower red surfaces). The graphs show the ratio Rj(x, b,Q2) of Eq. (132) as a function of
x and the impact parameter |!b| at Q2 = 4 GeV2. The top panel corresponds to ū-quarks; the
bottom panel corresponds to gluons. For the evaluation of nuclear shadowing, model FGS10 H
was used (see the text).

results for the b-integrated nPDFs (i.e., usual nPDFs), see Figs. 33 and 34. All curves
correspond to our input scale Q2

0 = 4 GeV2 and to model FGS10 H. The antishadowing
for gluons is taken to be exactly as in the b-integrated case. As can be seen from Fig. 41,
nuclear shadowing is larger at small impact parameters than that in the case when one
integrates over all b. This is a natural consequence of the fact that the density of nucleons
is larger in the center of the nucleus.

In Fig. 42, we plot fj/A/(ATA(b)fj/N ) as a function of the impact parameter b for three
different values of x, x = 10−4, x = 10−3, and x = 0.005. All curves correspond to model

100

 Impact parameter dependence of nuclear 
shadowing for 40Ca (upper green surfaces) 
and 208Pb (lower red surfaces). The graphs 
show the ratio Rj(x,b,Q2)  as a function of x 
and the impact parameter |b| at Q2 = 4 GeV2. 
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gluons
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Fig. 31. Predictions for nuclear shadowing at the input scale Q 2
0 = 4 GeV2. The ratios Rj (ū and c quarks and gluons) and RF2 as functions of Bjorken x at

Q 2 = 4. The four upper panels are for 40Ca; the four lower panels are for 208Pb. Two sets of curves correspond to models FGS10_H and FGS10_L (see the
text).

Another important quantity related to the longitudinal structure function is the ratio of the virtual photon-target cross
sections for the longitudinal and transverse polarizations of the virtual photon,

R ⌘ �L

�T
= FL(x,Q 2)

F2(x,Q 2) � FL(x,Q 2)
. (123)

Below we present our predictions for the super-ratio RA/RN , which is the ratio of the nuclear to the nucleon ratios R:

RA

RN
⌘ FA

L (x,Q 2)

F2A(x,Q 2) � FA
L (x,Q 2)

F2N(x,Q 2) � FN
L (x,Q 2)

FN
L (x,Q 2)

= FA
L (x,Q 2)

AFN
L (x,Q 2)

AF2N(x,Q 2)

F2A(x,Q 2)

1 � FN
L (x,Q 2)/F2N(x,Q 2)

1 � FA
L (x,Q 2)/F2A(x,Q 2)

. (124)

The advantage of considering the super-ratio RA/RN is that this quantity is essentially insensitive to the value of the
elementary ratio RN .

Fig. 36 presents our predictions for RA/RN of Eq. (124) for 40Ca and 208Pb for four different values of Q 2 as a function of
Bjorken x. Both models FGS10_H and FGS10_L give numerically indistinguishable predictions for RA/RN . Also, as one can see
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Fig. 34. Prediction for nuclear PDFs and structure functions for 208Pb. The ratios Rj (ū and c quarks and gluons) and RF2 as functions of Bjorken x at Q 2 = 4,
10, 100 and 10, 000 GeV2. The four upper panels correspond to FGS10_H; the four lower panels correspond to FGS10_L.

The numerical value of the exponent � = 0.25 in Eq. (126) can be understood as follows. The x dependence of nuclear
shadowing at small x is primarily driven by the xP dependence of the Pomeron flux fP/p(xP) / 1/x(2↵P�1)

P / 1/x1.22P . There-
fore, in the very small x limit, one expects from Eq. (64) that, approximately,

�F2A(x,Q 2)/A /
✓
1
x

◆0.22

,

�xgA(x,Q 2)/A /
✓
1
x

◆0.22

, (127)

which is consistent with our numerical result in Eq. (126).
When we present our predictions for nuclear shadowing in the form of the ratios of the nuclear to nucleon PDFs, it is

somewhat difficult to see the leading twist nature of the predicted nuclear shadowing because of the rapid Q 2 dependence
of the free nucleon structure functions and PDFs. In order to see the leading twist nuclear shadowing more explicitly, one
should examine the absolute values of the shadowing corrections.

Fig. 38 presents |�F2A(x,Q 2)/A| and |�xgA(x,Q 2)/A| as functions of Q 2 at fixed x = 10�4 (first and third rows) and
x = 10�3 (second and fourth rows) for 40Ca (four upper panels) and 208Pb (four lower panels). The solid curves correspond
to FGS10_H; the dotted curves correspond to FGS10_L. Also, for comparison, presented by the dot-dashed curves, we give

8

Shadowing increases with decrease of x
 (cf. EKS09 guess:  flat at small x)
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Implications for RHIC - in the forward region one can probe x down to 
10-4  and hence check factorization. Likely to be broken for xp’s close to 
the edge of the phase space (will discuss later) and expect rather large 
effects.  In principle at lower energies one can probe smaller virtualities 
where modifications are stronger:  Forward Drell- Yan ? 

First data confirm expectation of the LT theory that cold nuclear matter 
parton density differs strongly from the sum of nucleon densities at least for x 
~ 10-3 and below. More data are expected from LHC on small x region, in 
particular LHCb down to x~ 10-5 

All analyses of processes which involve small x gluons like forward  inclusive 
J/ψ production  must include effect of LT gluon shadowing. Large/
dominant effect for forward J/ψ production in pA at LHC (LHCb data).



The key question: what is the mechanism of the suppression of the dominant pQCD contribution 
of quark scattering off gluons with xA> 0.01 where shadowing effects are very small.  Note also that  
shadowing on the scale observed by ALICE gives very small contribution to suppression in LT.

Forward pion production at RHIC:   Summary of the challenge

Suppression of the pion spectrum for fixed pt  increases with increase of ηN.  ☞

☞ For pp - pQCD works both for inclusive pion spectra and for correlations

Independent of details - the observed effect is a strong evidence for breaking of LT pQCD 
approximation.  Natural suspicion is that this is due to effects of strong small x gluon fields in 
nuclei as  the forward kinematics sensitive to small x effects.

CGC scenario - assumes  ☟ LT xA> 0.01 mechanism  becomes negligible, though experimentally  

nuclear pdf = A nucleon pdf for such x (assumes that somehow suppression of the LT mechanism 
should be  >> than observed suppression of inclusive spectrum),   ✌ 2 → 1 mechanism dominates

Post-selection scenario - LT xA> 0.01 mechanism is suppressed but still dominates inclusive cross section

10



    Post-selection (effective energy losses) in proximity to black disk regime (BDR) - usually only 
finite energy losses discussed (BDMPS) (QCD factorization for LT)  - hence a very small effect for partons with 
energies 104 GeV in the rest frame of second nucleus. Not true in black disk regime  - post selection - energy 
splits before the collision - effectively 5- 15 % energy losses decreasing with increase of kt.  at kt. > kt(BDR) 
Large effect on the pion rate since xq’s, z’s are large,

   Dominant yield from scattering at peripheral impact parameters.
Hence a modest reduction of polarized effects like AN

11

✔

⇒
 

⇒
 

Post-selection is a large effect only for large xF.  At small xF pt broadening a more 
prominent effect. Hence effect easier to observe at RHIC  than at the LHC.
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RHIC correlation data appear to rule out CGC 2 →1 mechanism as a major 
source of leading pions in inclusive setup⇒NLO CGC calculations of inclusive 

yield grossly overestimates 2 →1 contribution.

Also, so far no evidence for a strong suppression in pA (LHC) for the 
same / larger invariant parton - nucleus energy.  If saturation gives little at 
LHC it should give little for RHIC as well for the same effective s !? Transverse Momentum Distribution and Nuclear Modification Factor of Charged . . . 5
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p–Pb collisions at√sNN = 5.02 TeV. The ALICE data in |ηcms|< 0.3 (symbols) are compared to model calculations
(bands or lines, see text for details; for HIJING, DHC stands for decoherent hard collisions). The vertical bars
(boxes) show the statistical (systematic) errors. The relative systematic uncertainty on the normalization is shown
as a box around unity near pT = 0.

and systematic uncertainties. The total systematic uncertainty on the normalization, quadratic sum of the
uncertainty on 〈TpPb〉, the normalization of the pp data and the normalization of the p–Pb data, amounts
to 6.0%.

In Fig. 2 we compare the measurement of the nuclear modification factor in p–Pb to that in central (0–
5% centrality) and peripheral (70–80% centrality) Pb–Pb collisions at √sNN = 2.76 TeV [8]. RpPb is
consistent with unity for pT ! 2 GeV/c, demonstrating that the strong suppression observed in central
Pb–Pb collisions at the LHC [6–8] is not due to an initial-state effect, but rather a fingerprint of the hot
matter created in collisions of heavy ions.

The so-called Cronin effect [21] (see [22] for a review), namely a nuclear modification factor above unity
at intermediate pT, was observed at lower energies in proton–nucleus collisions. In d–Au collisions at√sNN = 200 GeV, RdAu reached values of about 1.4 for charged hadrons in the pT range 3 to 5 GeV/c
[23–26]. The present measurement clearly indicates a smaller magnitude of the Cronin effect at the LHC;
the data are even consistent with no enhancement within systematic uncertainties.

Data in p–Pb are important also to provide constraints to models. For illustration, in Fig. 3 the mea-
surement of RpPb at |ηcms|< 0.3 is compared to theoretical predictions. Note that the measurement is
performed for NSD collisions. With the HIJING [14] and DPMJET [12] event generators, it is estimated
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consistent with unity for pT ! 2 GeV/c, demonstrating that the strong suppression observed in central
Pb–Pb collisions at the LHC [6–8] is not due to an initial-state effect, but rather a fingerprint of the hot
matter created in collisions of heavy ions.

The so-called Cronin effect [21] (see [22] for a review), namely a nuclear modification factor above unity
at intermediate pT, was observed at lower energies in proton–nucleus collisions. In d–Au collisions at√sNN = 200 GeV, RdAu reached values of about 1.4 for charged hadrons in the pT range 3 to 5 GeV/c
[23–26]. The present measurement clearly indicates a smaller magnitude of the Cronin effect at the LHC;
the data are even consistent with no enhancement within systematic uncertainties.

Data in p–Pb are important also to provide constraints to models. For illustration, in Fig. 3 the mea-
surement of RpPb at |ηcms|< 0.3 is compared to theoretical predictions. Note that the measurement is
performed for NSD collisions. With the HIJING [14] and DPMJET [12] event generators, it is estimated



Expectation: The leading particle spectrum should be  strongly suppressed in the central pA 
collisions as compared to minimal bias pp collisions  since each leading parton gets large 
transverse momentum  and hence  fragments independently  and may also split into a couple of 
partons with comparable energies. The especially pronounced suppression for nucleons:  for  
z≥0.1  the differential multiplicity of pions should exceed that of nucleons. This model neglects 
additional suppression due to finite fractional energy losses in BDR 
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1
N

�
dN

dz

⇥pA�h+X

=
⇤

a=q,g

⌅
dx xf (p)

a (x,Q2
e�)Dh/a(z/x,Q2

e�)

Leading hadron production in the central pA(pp) collisions



Simple model of pt broadening - eikonal rescattering model with saturation  (Boer, 
Dumitru 2003), effective energy losses (mentioned before) are neglected 

2

FIG. 1: Schematic view of the collision geometry.

transverse distances ⇥ from the second nucleon and hence
encounter significantly di�erent local gluon densities (see
Fig.1). Thus we analyze the e�ects of the valence quark
interaction with small x gluon fields taking into account
the geometry of the collisions. This will allow us to deter-
mine how frequently valence quarks in pp collisions at dif-
ferent impact parameters b, experience hard collisions in
which they obtain a large transverse momentum. Based
on this study we propose a series of centrality triggers
which allow to select collisions at much smaller impact
parameters than in generic inelastic events and hence will
provide an opportunity to study the high gluon field ef-
fects in pp collisions. We also suggest that the pp colli-
sions leading to production of new particles like the Higgs
boson should be accompanied by a significantly stronger
flow of energy from the fragmentation regions to smaller
rapidities than in generic inelastic collisions.

Description of the model. To model the fragmentation
region in pp collisions we take a simple model for the three
quark wave function with the distribution of quarks over
transverse distance from the center given by exp(�A⇥2

i )
with < ⇥2 >⌅ 0.3fm2 matched to describe the distribu-
tion of the valence quarks as given by the axial nucleon
form factor. Accordingly, the event generator produces
the values of ⇥i for three quarks which are not correlated.
Note that one does not expect a very strong correlation
between ⇥’s due to the presence of additional partons in
the wave function (gluons, qq̄ pairs). Nevertheless we
checked that a requirement |

�3
i=1 ⇡⇥i| ⇥ 0.1 fm does not

change results noticeably. Hence we neglect possible cor-
relations in ⇥ between valence quarks. We also assume
that there are no significant transverse correlations be-
tween small x (x ⌅ 10�5) partons. This assumption is
based on the presence of di�usion in ⇥ in the small x
evolution which should wash away whatever correlations
may be present at x ⇤ 0.01.

When computing the momentum fractions of the
quarks, we need to know the virtuality at which the
quarks are resolved. Since the latter quantity is not
known beforehand, we generate xB,i and ⇡⇥i from dx/x =
const. and d⇥ = const. distributions. The selection ac-
cording to the structure functions and the form factor is
done in the end, after specifying Q2

s, via rejection. For
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FIG. 2: Probability for the di�erent classes of events with n
quarks struck at a given impact parameter b.

given ⇡b, ⇡⇥i in the projectile, we estimate Q2
s for the den-

sity encounted by each of the three valence quarks within
the color glass condensate approach.

Q2 = Q2
s(xA, ⇡|b + ⇡⇥i|), (2)

with xA = Q2/(sxB). Q2
s(xA, ⇥) is parameterized as

Q2
s(xA, ⇥) = Q2

s,0 (x0/xA)� Fg(xA, ⇥;Q2
s)/cF , (3)

where cF normalizes the density. We choose x0 = 0.01,
Q2

s,0 = 0.6 GeV2 and cF = Fg(x0, 0;Q2
s,0) such that

the saturation momentum in the center of the target at
xA = x0 is just Q2

s,0. The implicit definition for the sat-
uration scale in eq. (3) is solved by a simple iteration,
the expression converges after a few steps. Finally, the
whole configuration is accepted with the probability

p ⌅ ⇥Fg(xB , ⇥;Q2
s)xBfGRV(xB , Q2

s) , (4)

where xfGRV are standard GRV structure functions of
the proton, and the two-gluon form factor at high mo-
mentum fraction xB describes the spatial distribution of
the valence quarks. The actual transverse momentum
kick is then drawn from the distribution [4, 5]

C(kt) ⌅
1

Q2
s log Qs

�QCD

exp(� �k2
t

Q2
s log Qs

�QCD

) . (5)

We conservatively considered only the case when the
BDR is reached for Qs ⇤ 1 GeV/c and counted only
quark interactions in which the quark received a trans-
verse momentum kt ⇤ 0.75GeV/c. The reason for such a
cut is that for such momenta, the probability to form a
nucleon with large longitudinal momentum is suppressed,
as a minimum, by the square of the nucleon form fac-
tor F 2

N (kt). In the BDR a quark not only gets a large
transverse momentum but also loses a finite fraction of

Quark gets a transverse momentum of the order Qs  but does not loose significant energy (account 
would strengthen the effect) Use of the convolution formula for fixed transverse momentum of the 
produced hadron  using C(kt)  -   Dumitru, Gerland, MS -PRL03. Other calculations with similar 
logic -Gelis, Stasto, Venugopalan (06)
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Longitudinal (integrated over pt) and transverse  distributions in CGC  model for central pA collisions.  

Spectra for central pp - the same trends. Qualitative feature shared by all models -- suppression should 
grow with energy for fixed xF, and pt distribution should broaden.

Steep fall with z, 
strong Einc 

dependence 

Weak pt  
dependence, 

becomes weaker 

with increase of Einc 
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http://arxiv.org/find/hep-ph/1/au:+Gelis_F/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Gelis_F/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Stasto_A/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Stasto_A/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Venugopalan_R/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Venugopalan_R/0/1/0/all/0/1
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Warnings: Parton carrying a fraction y of the quark momentum carries y pt part of the quark’s transverse 
momentum. Condition for independent fragmentation y pt  > 1/rN ~.3 - 0.5 GeV/c

For RHIC (LHC)  independent fragmentation is probably safe for  z > 0.2 (0.1)

Very few forward baryons in 
central collisions!!!

Experimental prospects (perhaps too optimistic for LHC)
 pA run at LHC: TOTEM: xF ≥0.8  broad range of pt can check both suppression and pt 
broadening 

➠

Warning:  Color fluctuations in nucleon and nucleon density in nucleus may reduce the suppression 

 neutrons from ZDC (CMS, ALICE, LHCf); π0+ (LHCf) -large z , moderate pt

Large flow of energy to 
central rapidities
- obvious implications for AA 
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Photon - proton contribution has to be subtracted!!! 

RHIC: will allow  pA runs at different energies and  for several nuclei to avoid model 
dependent procedure for determining centrality of collision. Spin effect for neutrons ??? LHCf 
LOI for RHIC - nice way to compare pA at LHC and RHIC.



p ppp

A A AA

A A A A

p p p p

+

+

Glauber model 
in rescattering proton in 
intermediate state - zero at 
high energy 
- AFS cancelation - no time 
for a proton to come 
together between nucleons

High energies = 
Gribov -Glauber 

X

p

X= set of intermediate 
states the same as in pN 
diffraction

�2 /
Z

dtF 2
A(t)

d�(p+ p ! p+X(p+ inel diff))

dt

4

Glauber model 
in rescattering proton in intermediate state - zero at 
high energy  - cancelation of planar diagrams 
(Mandelstam & Gribov)- no time for a proton to 
come together between nucleons. Violates energy 
conservation for cut through two exchanges

High energies =  Gribov -Glauber 

X= set of intermediate states the 
same as in pN diffraction

Deviations from Glauber for σtot(pA) are small for Einc ~ 10 GeV as inelastic diffraction is still small. They 
stay small for heavy nuclei for all energies. But for pD at ISR at large t effect is large ~40%. An effective way 
to implement Gribov-Glauber picture of high energy pA interactions is the concept of color fluctuations

�2 /
Z

dtF 2
A(t)

d�(p+ p ! p+X(p+ inel diff))

dt

High energy space-time picture of soft  pA  - Gribov - Glauber 
fundamentally different from low  energy Glauber picture

COLOR FLUCTUATIONS  & CONDITIONAL PDFs



Are there global fluctuations of the strength of interaction of a fast nucleon, for example due to 
fluctuations of the size /orientation. Extreme case - color transparency. 

Due to a slow space-time evolution of the fast nucleon wave function one can treat the 
interaction as a superposition of interaction of configurations of different strength - Pomeranchuk 
& Feinberg, Good and Walker, Pumplin  &Miettinen.  In QCD this is reasonable for total cross 
sections and for diffraction at  very small t.

N = 3q + 3qg + 3q+ π + ...

● ●
● vs

●
● ●

rtr rtr

pN
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Color fluctuations in the nucleon wave function & 3-dimensional mapping of the nucleon

proton= quark + diquark



Convenient quantity - P(σ)  -probability that nucleon interacts with cross section σ.   

dσ(pp!X+p)
dt

dσ(pp!p+p)
dt

|t = 0
=

�
(� � �tot)2P (�)d�

�2
tot

⇥ ⇥� variance
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∫P(σ)d σ= 1, ∫ σ P(σ)d σ=σtot, 

Pumplin  &Miettinen

∫ (σ - σtot)3 P(σ)d σ= 0, Baym et al from pD diffraction

P (�)|�!0 / �nq�2
Baym et al 1993

ωσ(RHIC)=0.25 ωσ(LHC)=0.20  - more data are coming from LHC

A very rough model illustrating scale of the effect
P (�) =

1

2
�(� � �

tot

(1�
p
!
�

)) +
1

2
�(� � �

tot

(1 +
p
!
�

))

for RHIC ωσ=0.25,   σ1=0.5σtot ; σ2=1.5σtot for LHC ωσ=0.2 (0.1?),   σ1=60mb ; σ2=140mb 
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sponds to ((o- - (~r)) 3 ~- 0, as would occur for a distribution nearly
symmetric: of approximately (~r) (88).

For small values of o-, further information can be obtained from QCD,
which implies (19)

P(o’) - "Nq-2 4.4

for ~r << ((r), where Nq is the number of valence quarks. Thus, 
nucleon distribution Pu((r) is --O" for small (~, while for the pion P~(o-)
is approxiimately constant. The results of reconstructing PN(o-) and
P~(o’) from the first few moments of P(o-) and from Equation 4.4 
shown in ].~igure 6. They indicate a broad distribution for proton projec-
tiles and an even broader one for pion projectiles. One expects even
further broadening for K-meson projectiles.

4.3 Sm’all-Sized Configurations in Pions
One can test this approach by using QCD to compute P,(~r = 0) 
high energies. Indeed, the physics at small (r is dominated by small

0.030 I I I I

--.pOCDrongefor P~ (0)

0.025 ~ ~7~~)

v._. o.ozo
d~

~ (or)0.015 -
/~.~-

/- \\O.OIO

0.C~3~

o zo 40 60 ~o too
o" (mb)

Figure 6 C, ross-section probability for pions P~(cr) and nucleons P~v(~) as extracted
from experimental data. P,,(cr = 0) is compared with the perturbative QCD prediction.
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Pπ(σ) is also shown
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Extrapolation of Guzey  & MS to 
higher energy using diffractive data
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FIG. 2: The proton-Lead total, elastic and diffractive dissociation cross sections as functions of
√

s. The solid curves correspond to Glauber formalism with cross section fluctuations; the dashed

curves neglect the cross section fluctuations.

sections. The effect is largest in the
√

s = 100 − 200 GeV region. This can be explained

by the increasing role of nuclear shadowing: an increase of ωσ leads to an increase of the

inelastic shadowing correction, which decreases the total cross section.

An examination of Fig. 2 shows that, for
√

s > 546 GeV, the total cross section behaves

12

Color fluctuations/inelastic shadowing 

σtot(pPb)

σel(pPb)
σdiff(pA→XA)Guzey & MS

true for hard diffraction as well (Guzey, MS)

E.M. interaction dominates by far in diffraction above RHIC energies⇒

⇒
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FIG. 4: The electromagnetic contribution evaluated using Eq. (27) (dashed curves) and coherent

diffractive dissociation cross sections (solid curves) as functions of
√

s for Pb and Ca.

of Donnachie and Landshoff [15],

σγ p
tot(s) = 0.0677 s0.0808 + 0.129 s−0.4525 , (29)

where s = 2 ω mp + m2
p.

The resulting electromagnetic contributions to the coherent diffractive cross section are

presented in Fig. 4 by dashed curves. They should be compared to the coherent diffractive

dissociation cross sections presented by the solid curves. The comparison shows that the

electromagnetic contribution completely dominates coherent p A diffraction on Pb-208 at

all considered energies. For the lighter nucleus of Ca-40, the role of the electromagnetic

contribution becomes progressively important with an increasing energy: while σpCa
e.m. is about

25% of σpCa
DD at the RHIC energy (

√
s = 200 GeV), σpCa

e.m. is three times larger than σpCa
DD in

the LHC kinematics (
√

s = 9000 GeV).

VI. CONCLUSIONS AND DISCUSSION

We calculated the total, elastic and diffractive dissociation proton-nucleus cross sections

at high energies using the Glauber-Gribov formalism and taking into account inelastic in-

16

For RHIC for A=200 comparable contributions, for A=40,  e.m.  
contribution is a small correction.  A unique opportunity for RHIC. 
Use ZDC to suppress break up? 

RHIC



Numerical calculations (Alvioli and MS) - event generator using our sets of nucleon 
configurations in nuclei  with short-range correlations (small effect) and finite radius of 
NN interaction.

For NN scattering Pinel(ρ)= 1 - |1- Γ(ρ)|2 

We also took σ/B= const for fluctuations (corresponding to  σel/σtot=const) 

model and the Monte Carlo calculations which take into account finite radius of the NN

interaction neglected in the optic model.

IV. EFFECTS OF FLUCTUATIONS IN THE MONTE CARLO MODEL

An additional source of event-by-event fluctuations of the number of wounded nucleons

comes from the fluctuations in the number of nucleons at a given impact parameter. These

fluctuations are present already on the level of the Glauber model [8]. These fluctuations

decrease with increase of σtot(NN) due to an increase of the overall number of interacting

nucleons, N , at a given impact parameter. In the case when no fluctuations of σ are present,

we have:

〈N(σinel)〉 = 〈N〉
σinel

〈σinel〉
. (14)

In this case we can write
〈

N(σinel)
2
〉

= 〈N〉2 (1 + ωρ) , (15)

where ωρ is the quantity calculated for dispersion in the case of no color fluctuations. The

dependence of ωρ on σinel(NN) is presented in Fig. 1 for b = 0 and b = 4. In the calculation

we use the event generator [8]. The event generator includes short-range correlations between

nucleons, however this effect leads to a very small correction for the discussed quantity.

When both fluctuations are included average N does not change. Hence the dispersion

of the distribution over N including both effects can be calculated as follows:

〈

N2
〉

=
∫

dσinelP (σinel) 〈N〉2
(

σinel

〈σinel〉

)2

(1 + ωρ) . (16)

Now we can calculate the total dispersion. The first term in (1 + ωρ) gives simply ωσ. The

second term takes into account the dependence of ωρ on σinel:

ωtot = ωσ +
∫

dσinelP (σinel)

(

σinel

〈σinel〉

)2

ωρ . (17)

As a result the overall dispersion is somewhat smaller that ωσ+ωρ(σtot) since the the integral

in the second term is dominated by σ > σtot. In order to perform numerical analysis we

follow [10], and take the probability distribution for σtot as [16]:

Ph(σtot) = r
σtot

σtot + σ0
exp{−

σtot/σ0 − 1

Ω2
} , (18)

7
with parameters fixed to satisfy sum rules
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correlations in the optical limit Glauber-Gribov formalism can be found in Refs. [6–8] and

will not be discussed here. Eq. (7) can be rewritten as a sum of positive cross sections [9]

as follows:

σhAin =
A
∑

n=1

σn, σn =
A!

(A− n)!n!

∫

dbxn(1− x)A−n (8)

where σn denotes the cross section of the physical process in which n nucleons have been

involved in inelastic interactions with the projectile. Then the average number of interactions

〈N〉 may be expressed as

〈N〉 =
A
∑

n=1

nσn

/ A
∑

n=1

σn =
σhNin
σhAin

∫

d2b
A
∑

n=1

A!

(A− n)!(n− 1)!
xn(1− x)A−n

=
σhNin
σhAin

∫

d2b AT (b) =
AσhNin
σhAin

, (9)

which coincides with the naive estimate of shadowing as being equal to the number of

nucleons shadowed in average collision. .

We can include color fluctuations by allowing the cross section σin to be distributed

according to P (σin):

σhAin =
∫

dσinPN(σin)
∫

db
[

1− (1− x)A
]

(10)

and

σn =
∫

dσinPN (σin)
A!

(A− n)!n!

∫

dbxn(1− x)A−n . (11)

The probability of collisions with exactly k inelastic interactions in both Glauber model and

the color fluctuation approximation are simply Pk = σk/σhA
in .

Using the equations above we can for example calculate average number of the collisions

which is given by the same equation as for the Glauber model (Eq. (9)), leading to a very

small (few %) change of average N since the inelastic corrections to σhA
in are small. At the

same time we can calculate the variance of the distribution over the number of collisions.

We observe that Eq. (11) leads to

〈N(N − 1)〉 = A(A− 1)
〈

σ2
in

〉

∫

dbT 2(b). (12)

and hence the variance is equal to

ωN ≡
〈N2〉
〈N〉2

− 1 =
A(A− 1) 〈σ2

in〉
〈N〉2

∫

dbT 2(b) +
1

〈N〉
− 1. (13)

5

Small effect for <N>  
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 Large color fluctuation effect for 
dispersion even though in dispersion one 
integrates over impact parameters. Effect 
is much larger for fixed b - see below
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We can include color fluctuations by allowing the inelastic cross
section σin to be distributed according to a proper distribution,
P H (σin):

σ h A
in =

∫
dσin P H (σin)

∫
db

(
1 −

[
1 − x(b)

]A)
, (9)

where now x(b) = σinT (b)/A, and

σN =
∫

dσin P H (σin)
A!

(A − N)!N!

∫
db x(b)N[

1 − x(b)
]A−N

. (10)

The probability of collisions with exactly N inelastic interactions
in both Glauber model and the color fluctuation approximation is
simply RN = σN/σ h A

in .
Using the equations above we can for example calculate the

average number of collisions which is given by the same equa-
tion as for the Glauber model (Eq. (8)), leading to a very small
(a few %) change of average N , as shown in Table 1, since the
inelastic corrections to σ h A

in are small for a realistic P H (σin); see
Ref. [13] and references therein. The physical reason why the cor-
rections are small is that, in a broad range of b, the interaction
is close to the black limit for all essential values of σin , so only a
small range of (large) b contributes to inelastic shadowing correc-
tions. At the same time the color fluctuation effect is large for the
variance of the distribution over the number of collisions. Eq. (10)
leads to

〈
N(N − 1)

〉
= A(A − 1)

〈σ 2
in〉

σ h A
in

∫
db T 2(b), (11)

and hence the variance is equal to

ωN ≡ 〈N2〉
〈N〉2 − 1 = A(A − 1)

〈N〉2

〈σ 2
in〉

σ h A
in

∫
db T 2(b) + 1

〈N〉 − 1. (12)

One can see from Eq. (12) that the variance receives contribu-
tions both from the fluctuations of the impact parameter and
from the fluctuations of σin . Using Eqs. (8), (11) we obtain for
the variance in Eq. (12) the value of about 0.46 (RHIC) and 0.51
(LHC). Numerical values of the different terms in Eq. (12) are:
1.26+0.20−1 = 0.46 (RHIC) and 1.38+0.13−1 = 0.51 (LHC). The
account of the color fluctuations practically does not change 〈N〉.
It mainly changes the nominator of the first term by the factor
1 + ωσ .1 Though this change is rather small, the strong cancel-
lation between the first and the third terms of Eq. (12) strongly
enhances the effect of color fluctuations.

A more realistic treatment of the color fluctuations taking into
account the profile function of the NN interactions and small ef-
fect of short-range correlations is possible in the MC model de-
scribed in the next section. First, one calculates the probability
P N(b) shown in Fig. 1 of having exactly N inelastic interactions
at a given impact parameter b. Next one can calculate the quan-
tity in Eq. (12) by integrating P N (b) over the impact parameter:
P N = 2π

∫
b db P N (b). The results are given in Table 1.

A comparison of some of the predictions of the optical approx-
imation of the Glauber model and the MC calculations, which take
into account finite radius of the NN interaction neglected in the
optical model, will be given below.

4. Monte Carlo algorithm for modeling effects of fluctuations

We have seen from the analysis of the optical model that fluc-
tuations in the number of wounded nucleons originate both from

1 We assume here that fluctuations for the inelastic and total cross sections are
similar, cf. discussion before Eq. (17).

Table 1
The fluctuations, as defined in Eq. (12), calculated both within the MC approach
and optical model. We used no color fluctuation (Glauber), color fluctuations im-
plemented with the two states model described in the text (GG2) and with the
full color fluctuation model (GG Ph(σtot)) described by the distribution Ph(σtot) of
Eq. (16).

Energy/model Monte Carlo Optical model

〈N〉 〈N2〉 ωN 〈N〉 〈N2〉 ωN

RHIC, Glauber 4.6 31.6 0.51 5.0 35.9 0.46
RHIC, GG2 4.7 38.9 0.74 5.1 45.3 0.71
RHIC, GG Ph(σtot) 4.8 39.2 0.72 5.2 45.6 0.70

LHC, Glauber 6.7 72.4 0.59 7.6 88.0 0.51
LHC, GG2 6.8 84.2 0.80 7.8 106.2 0.75
LHC, GG Ph(σtot) 6.8 82.1 0.77 7.8 106.4 0.74

color fluctuations and from fluctuations of the number of nucleons
along the path of the projectile.

The event-by-event fluctuations of the number of wounded nu-
cleons due to the fluctuations in the number of nucleons at a given
impact parameter are present already on the level of the Glauber
model [14]. In the case when no fluctuations of σ are present,
〈N(σ hN

in )〉 is given by Eq. (8). In this case we can write

〈
N

(
σ hN

in

)2〉 = 〈N〉2(1 + ωρ
(
σ hN

in

))
, (13)

where ωρ(σ hN
in ) is the dispersion in the case of no color fluctu-

ations. We found that ωρ(σ hN
in ) drops as a function of σ hN

in , as a
consequence of the increasing number of nucleons in the interac-
tion volume. In the calculations we use the event generator [14].
This event generator includes short-range correlations between nu-
cleons, however this effect leads to a very small correction for the
discussed quantity. The code also includes a realistic dependence
of the probability of the NN interaction on the relative impact pa-
rameter of the projectile b, and the target nucleon b j : b − b j . The
probability of the interaction is expressed through the impact fac-
tor of the NN elastic amplitude

Γ (b − b j) = σ hN
tot

4π B
e−(b−b j)

2/2B (14)

as follows:

P (b,b j) = 1 −
[
1 − Γ (b − b j)

]2
. (15)

Here we used the exponential fit to the elastic cross section
dσ /dt ∝ exp(Bt).

In order to perform numerical analyses we follow [16], and take
the probability distribution for σtot as follows:

Ph(σtot) = ρ
σtot

σtot + σ0
exp

{
− (σtot/σ0 − 1)2

Ω2

}
, (16)

where ρ is a normalization constant and we have σ0 = 72.5 mb
and Ω = 1.01 at LHC energies, while σ0 = 32.6 mb and Ω = 1.49
at RHIC energies. One can verify that the distribution of Eq. (16)
satisfies the sum rules (3), (4), with our values σ hN

tot = σ NN
tot =

51.95 mb for RHIC and σ hN
tot = σ NN

tot = 94.8 mb for LHC energies.
When converting from the distribution over σtot , Ph(σtot), to

the distribution over σin , P H (σin), we used the geometric scaling
observation that the t-slope of the elastic scattering is proportional
to σtot . So the ratio σin/σtot = λ weakly depends on the projectile
and energy. Hence we take λ = const, so that we simply have to
use a Jacobian 1/λ, with

P H (σin) = Ph(σtot)/λ, σin = λσtot. (17)

Indeed in this case
∫

dσin P H (σin) = 1 holds as well. This corre-
sponds to B(σtot) = B(σ hN

tot )σtot/σ hN
tot .



The probability PN (b) of having 
N inelastically interacting 
(wounded) nucleons in a pA 
collision, vs. impact parameter b, 
when using simple Glauber (red 
curves) and a distribution P (σ) 
(green curves); We show the 
probabilities PN (b) for N=1 (top 
row) for both energies and the 
curves for N corresponding to ⟨N⟩ 
and ⟨N⟩±0.5⟨N⟩ (remaining 
panels); ⟨N⟩ is 5 and 7 for RHIC 
and LHC energies, respectively
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Fig. 1. The probability P N (b) of having N inelastically interacting (wounded) nucleons in a p A collision, vs. impact parameter b, when using simple Glauber (red curves),
a two states model (black curves) and a distribution Ph(σtot) (blue curves); cf. Eq. (16). The P N (b)’s are obtained by extension of the MC code of Ref. [14] to include color
fluctuations. Top row shows P N=1(b); the remaining panels correspond to N = 〈N〉 and N = 〈N〉 ± 0.5〈N〉. 〈N〉 is taken as 5 and 7 for RHIC and LHC energies, respectively
(cf. Table 1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

In our numerical studies we used the fluctuation distribution
given by Eq. (16), σ NN

tot given above and B = 14 GeV−2 (RHIC), B =
19.38 GeV−2 (LHC). This parametrization satisfies the s-channel
unitarity condition Γ (b) 6 1. In our model this condition holds
automatically also for the elastic “color-fluctuation”-nucleon ampli-
tude. Our algorithm is a natural extension of that of [14] — where
distribution over N was calculated in the Glauber model neglecting
effects of color fluctuations.

Since the contributions of states with different σ do not inter-
fere, the probability P N (b) to have exactly N inelastic interactions
at given b is2

P N(b) =
∫

dσtot Ph(σtot)P N(b;σtot), (18)

2 In this treatment we neglect small contributions of incoherent diffractive pro-
cesses p A → X A# , which mostly contribute to P1(b).

where P N (b;σtot) is calculated using the procedure of Ref. [14]
for fixed σ hN

tot in the Glauber model. Including color fluctuations
results in a substantially broader distribution over b of the proba-
bility P N (b) of having exactly N interactions for a given impact pa-
rameter N , as shown in Fig. 1. The two component model gives the
distributions pretty close to the distributions including full fluctu-
ations. P N (b) are obviously normalized so that

∑
N

∫
db P N (b) =

σ h A
in . The calculations of Table 1 have been performed integrat-

ing the quantities of Fig. 1 over the impact parameter: P N =∫
db P N (b); 〈N〉 = ∑

N N P N/
∑

N P N ; 〈N2〉 = ∑
N N2 P N/

∑
N P N .

Another quantity which characterizes the effects of spatial and
color fluctuations is dispersion of the number of interactions at a
given impact parameter, b. To illustrate the expected pattern let us
first consider the case of small b and large A, when the probability
of having at least one inelastic interaction is 1. In this case 〈N〉 =
T (b)σin , hence the dispersion of the distribution over N including
both effects can be calculated as follows:



Fluctuations give dominant contribution to fluctuations of N for fixed b
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Fig. 2. Effect on fluctuations of the dispersion, Eq. (21), when using a distribution of σtot with two values of the cross section with equal probability and with Ph(σtot) given
by Eq.(16), for realistic parameters corresponding to RHIC (left) and LHC (right) energies.

Fig. 3. Effect of the event-by-event fluctuating values of σtot , for RHIC (left panel) and LHC energies (right panel) on the number of wounded nucleons, calculated as
F N =

∫
db P N (b)/σ h A

in . Red curves show the results obtained with the usual Glauber calculation with fixed cross section, black curves correspond to calculations with the two
component model and blue curves correspond to calculations with fluctuating cross section with Ph(σtot) distribution. The insets show the same quantities in logarithmic
scale. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

〈
N2〉 =

∫
dσin P H (σin)〈N〉2

(
σin

〈σin〉

)2(
1 + ωρ(σin)

)
. (19)

Now we can calculate the total dispersion. The first term in
(1 + ωρ) simply gives ωσ . The second term takes into account the
dependence of ωρ on the fluctuating σin:

ωtot = ωσ +
∫

dσin P H (σin)

(
σin

〈σin〉

)2

ωρ(σin). (20)

Since the integral in the second term is dominated by σin > σ hN
in ,

for which ωρ is smaller than in correspondence of the average
value of σin , σ hN

in , Eq. (20) leads to a dispersion somewhat smaller
that ωσ + ωρ(σ hN

in ). This is consistent with the pattern we find in
the numerical calculation presented in Fig. 2 for

D(b) = 〈N2〉b − 〈N〉2
b

〈N〉2
b

, (21)

〈N〉b = ∑
N N P N (b)/

∑
N P N (b) and 〈N2〉b = ∑

N N2 P N (b)/∑
N P N (b). One can see that for RHIC and LHC energies the domi-

nant effect comes from color fluctuations. Moreover, the two states
approximation gives the result which is very close to the calcula-
tion with full Ph(σtot), so the two states model can be used to
simplify modeling of color fluctuation effects.

The large variance of the distribution leads to a much wider
distribution over N than in the Glauber model, as shown in Fig. 3.
The figure shows the quantities F N =

∫
db P N (b)/σ h A

in ; the same
quantities are plotted in logarithmic scale in the insets, and one
can see that the color fluctuations produce a much stronger large
N tail. Among other things, this implies that selection of events
which in the Glauber model correspond to very central impact pa-
rameters actually gets a significant contribution from pretty large

impact parameters — for example, in the two component model
discussed above the collisions at impact parameter b satisfying the
condition T (b)/T (0) = 1/(1+√

ω ) with a probability of 1/2 gener-
ates the same number of wounded nucleons as average number of
wounded nucleons at b = 0. For ω = 0.25 we have 1/(1 + √

ω ) =
0.67 and this corresponds to b % 4.58 fm.

An important implication of the broad distributions over N
which is mostly due to fluctuations of the strength of the inter-
action is that selection of large N also selects configurations in the
projectile nucleon with cross section larger than average. To illus-
trate this trend within our MC, let us consider the average σtot for
events with a given number N of wounded nucleons. Denoting the
probability to have exactly N wounded nucleons P N =

∫
db P N(b)

and using Eq. (18), we can write

〈σtot〉N

σ hN
tot

= 1

σ hN
tot

∫
dσtot db σtot Ph(σtot)P N(b;σtot)∫

dσtot db Ph(σtot)P N (b;σtot)
. (22)

The results of the calculation are presented in Fig. 4. One can
see that selecting N & 〈N〉 leads to a significant enhancement of
the contribution of configurations which have interaction strength
larger than average. For small N average 〈σtot〉N is below σ hN

tot ,
but the effect is relatively small especially for N = 1 where very
peripheral collisions contribute which are not sensitive to the fluc-
tuations. A natural source of large σ ’s are configurations of larger
than average transverse size. One can expect that the gluon field is
enhanced in these configurations while the distribution in x — the
light-cone fraction carried by partons of the projectile — is softer
for large x leading to a correlation between the distribution over
N and distribution over x of a hard collision.

Matching the number of wounded nucleons to the physical ob-
servables is certainly a challenging problem in view of fluctuations
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Effect of fluctuations on the event-by-event fluctuating values of cross section. Small number 
of wounded nucleons, M,  selects  σ’s smaller than average - large M  --- - σ > σtot

Reminder: RHIC studied d-Au - smaller effect of  fluctuations for hard trigger.
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Fig. 4. Effect of fluctuations on the event-by-event fluctuating values of σtot , for RHIC and LHC energies.

Fig. 5. Fraction of inelastic cross section plotted as a distribution over impact parameter as defined in Eq. (23). Horizontal lines at 0.2, 0.4 and 0.6 correspond to the
experimental definition of 20%, 40% and 60% centrality, respectively.

of the impact parameter in the collisions. A model independent
treatment of this problem would require a study of p A collisions
for different nuclei. Still the central multiplicity appears to be a
good observable even in the presence of the color fluctuations. In-
deed in the soft interaction dynamics the hadron multiplicity for
central rapidities, yc.m. ∼ 0, does not depend on σ hN

tot , as it is de-
termined by the density of partons in a single Pomeron ladder.
Hence the hadron multiplicity for yc.m. ∼ 0 should be about the
same for different fluctuations. Also the first studies of the p A
collisions at the LHC indicate that to a good approximation the
hadron multiplicity for pt > 1 GeV is proportional to the number
of wounded nucleons calculated in the Glauber model [17]. Hence
we expect that selecting events with the yc.m. ∼ 0 hadron mul-
tiplicities: M/〈M〉 > 2.5 should select configurations in the pro-
jectile significantly larger than average ones (cf. Fig. 4 right) with
significantly different parton distributions.

Correspondingly, a trigger for configurations of smaller than av-
erage size would lead to a more narrow distribution in N . One
such possibility is to select as a trigger a hard process in which
a parton of the proton with xp > 0.6 is involved. One may ex-
pect that in this case one selects quark–gluon configurations with-
out qq̄ pairs and significantly screened gluon field, leading to σin
significantly smaller than average and hence a strong suppres-
sion of large N tail [18]. Such measurements appear to be feasi-
ble using the data collected in the 2013 p A run at the LHC in
which a significant number of events with large xp should have
been collected. Since this kinematics (for the current LHC detec-
tors) corresponds to very large pT ’s of the jets, one expects that
for the inclusive cross section impulse approximation would work
very well. Hence it would be possible to avoid issues of the fi-
nal/initial state interactions and nuclear shadowing in interpreting
these data.

A convenient quantity to study these effects experimentally
would be a measurement of the distribution over xp for different

classes of hard collisions at fixed xA normalized to the distribu-
tion in the inclusive p A scattering. A large effect is expected for
the central collisions where the hard cross section should be sup-
pressed for large xp > 0.2–0.3 and enhanced for x 6 0.05.

Note that such a measurement among other things would allow
to test in an unambiguous way the explanation of the EMC effect
at large x as due to the dominance of the smaller than average
size configurations in nucleon at x > 0.6; for a recent review see
Ref. [19].

We also investigated the impact of fluctuations of the definition
of centrality classes. We followed the experimental definition, in
which the centrality is proportional to the fraction of total inelastic
cross section provided by a given type of events. We can extract
from the MC results of Fig. 1 the probability Q N of having at least
N inelastic interactions, irrespective of the impact parameter b (cf.
Eq. (7)):

Q N =
∑A

M=N

∫
db P M(b)

∑A
M=1

∫
db P M(b)

, (23)

in such a way that Q N=1 = 1 by definition. This allows to es-
timate the fraction of σ h A

in arising from a given interval in the
number of wounded nucleons. Then, one can choose a central-
ity class and select the interval in number of wounded nucleons
which contributes to that class. In Fig. 5, we have chosen the
classes of the 20% most central events by requiring it to provide
20% of the total inelastic cross section and, similarly, we have sin-
gled out the 20%–40% and 40%–60% centrality classes, and the
40% most peripheral events as the last class. We use the num-
ber of the wounded nucleons corresponding to (closer to) these
cuts as limits in N entering in Eq. (24), for the calculation of the
curves in Fig. 6. In Fig. 6 we show, for the selected classes, the
distribution of events as a function of impact parameter by plot-
ting

h�
tot

i
�hN

tot

⇠ 2 for N/<N> =4



Different σ’s  --- different size, different shape, different parton densities

would lead to ridges
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Conditional pdfs



Use the hard trigger to determine xp and low pt hadrons  
to measure overall strength of interaction σeff  of configuration 
in the proton with given xp   FS83.  Conditional pdfs

LHC - jets with large pt - -- practically no nuclear shadowing effects

Expectation: Larger the size, more gluon radiation, softer the x distribution

G(x, Q2 |⇥) = G(x, �Q2)
�(Q2) � (⇥/⇥⇥⇤)�s(Q2

0)/�s(Q2) whereQ2
0 � 1 GeV2

Illustration

gives a reasonable magnitude of fluctuations of the gluon density

would result in different parton distribution in nucleons measured with different 
number of  wounded nucleons, with no change in the inclusive case
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x
0.1

Rg(x)

1

RHIC - mixed situation



Alternative strategy  - use a hard trigger which selects rare configurations in 
nucleon which are small size or large size (large number of wounded nucleons?)

The presence of a quark with large  x>0.6 requires three quarks to exchange 
rather large momenta, one may expect that these configurations have a smaller 
transverse size (+ few gluons & sea quarks at low Q scale) and hence interact 
with the target with a smaller effective cross section: σeff.
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Selection of such x seems feasible at LHC. Can it be done at RHIC after 
forward upgrade?  

Note:  if x>0.6 configurations do have a size smaller than average, it would 
explain the EMC effect (FS83)
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Generically - there should be correlations between the rate of hard 
collisions and soft multiplicity - modifications in both nuclear pdfs and 
nucleon pdfs. Interpretation a bit more complicated at RHIC than at 
the LHC  because of issue of account for energy conservation 
(PHENIX  1305.3540)

Especially interesting looking at events with the number of wounded 
nucleons > 1.5 <N>.  Changes in both conditional nuclear pdfs, and in 
proton.
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Conclusions on  physics opportunities of pA:

Will produce a novel information on strong interactions in the high gluon 
density   kinematics for fixed nuclear thickness as a function of energy:

Will complement pA run at LHC - critical for understanding how 
small x dynamics changes with energy 

Will  allow to measure inelastic diffraction at the highest energy 
where it is still comparable/larger than e.m. contribution

parton , groups of partons propagation through media in soft and hard regime including 
spin effects ( I do not large ones - hence not discussed )

Check the color fluctuation dynamics for generic inelastic pA collisions, 
measure conditional nucleon/ nuclear pdfs.

☛

☛

☛

☛



31



32



33


